

Fig. 2. Projection of the atomic arrangement of $\mathrm{Ca}_{2} \mathrm{Li}_{2} \mathrm{P}_{6} \mathrm{O}_{18} .8 \mathrm{H}_{2} \mathrm{O}$ along the a axis.

As shown by Fig. 1, a projection along the c axis, the centrosymmetric $\mathrm{P}_{6} \mathrm{O}_{18}$ ring anion located around the inversion centre at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and the centrosymmetric $\mathrm{Li}(2) \mathrm{O}_{6}$ octahedron share two O atoms so as to
build an infinite chain parallel to [110]. These chains are themselves interconnected along the \mathbf{c} direction by the second lithium octahedron, $\mathrm{Li}(1) \mathrm{O}_{6}$, also centrosymmetric, so as to form planes parallel to [110] (Fig. 2). The connections between the phosphoric groups and the lithium octahedra are different. The $\mathrm{Li}(1) \mathrm{O}_{6}$ octahedron shares four O atoms with its two adjacent phosphoric groups while $\mathrm{Li}(2) \mathrm{O}_{6}$ shares two. These planes are themselves interconnected in a three-dimensional manner by the CaO_{7} polyhedra and the hydrogen bonds whose main geometrical features are given in Table 2. The drawings were made with STRUPLO (Fischer, 1985).

References

Averbuch-Роuchot, M. T. (1989). Acta Cryst. C45, 1856-1858. Averbuch-Роuchot, M. T. (1990). Acta Cryst. C46, 10-13.
Enraf-Nonius (1977). Structure Determination Package, version RSX11. Enraf-Nonius, Delft, The Netherlands.
Fischer, R. X. (1985). J. Appl. Cryst. 18, 258-262.
International Tables for X-ray Crystallography (1974). Vol IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerca, J.-P. \& Woolfson, M. M. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

Acta Cryst. (1990). C46, 970-972

Structure of $\mathbf{H o}_{2} \mathbf{B a}_{2} \mathbf{C u}_{1+x} \mathbf{P t}_{1-x} \mathbf{O}_{\mathbf{8}}(\boldsymbol{x}=\mathbf{0} \cdot \mathbf{1})$

By Yoko Saito, Kazutoshi Ukei, Toetsu Shishido and Tsuguo Fukuda
Institute for Materials Research, Tohokú University, Katahira, Aoba-ku, Sendai 980, Japan

(Received 5 April 1989; accepted 1 June 1989)

Abstract. $\mathrm{Ho}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1+x} \mathrm{Pt}_{1-x} \mathrm{O}_{8} \quad(x=0 \cdot 1), \quad M_{r}=$ 978.0, orthorhombic, Pcmn, $a=10.303$ (2), $b=$ $5 \cdot 668(1), c=13 \cdot 178$ (3) $\AA, V=769 \cdot 6$ (3) $\AA^{3}, Z=4$, $D_{x}=8.44 \mathrm{Mg} \mathrm{m}^{-3}, \quad$ Мо $K \alpha, \quad \lambda=0.71073 \AA, \quad \mu=$ $50 \cdot 1 \mathrm{~mm}^{-1}, F(000)=1648$, room temperature, final $R=0.064$ for $1473\left[\left|F_{o}\right|>3 \sigma\left(F_{o}\right)\right]$ unique reflections. The crystal is isomorphous with $\mathrm{Er}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1.1} \mathrm{Pt}_{0.9} \mathrm{O}_{8}$ and is composed of a one-dimensional structure of Cu, O and Pt ions running parallel to the b axis.

Introduction. Recently, during the synthesis of single crystals of $\mathrm{ErBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$ which shows high- T_{c} superconductivity, a new compound $\mathrm{Er}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1 \cdot 1} \mathrm{Pt}_{0.9} \mathrm{O}_{8}$ which incorporates the element Pt from a Pt crucible, was obtained (Shishido, Fukuda, Toyota, Ukei \& Sasaki, 1987) and its structural studies were reported
(Ukei, Shishido \& Fukuda, 1988). The same type of compound with Y as the rare-earth element has been studied (Swinnea \& Steinfink, 1987; Laligant, Ferey, Hervieu \& Raveau, 1987).

As an extension of the investigations of this series of $R_{2} \mathrm{Ba}_{2}(\mathrm{Cu}, \mathrm{Pt})_{2} \mathrm{O}_{8}(R=\mathrm{a}$ rare-earth element) compounds, the Ho compound has been prepared to determine the crystal structure.

Experimental. The crystal was prepared with reference to the preparation of $\mathrm{Er}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1.1} \mathrm{Pt}_{0.9} \mathrm{O}_{8}$ as described elsewhere (Shishido et al., 1987). Crystal size $0.63 \times 0.1 \times 0.1 \mathrm{~mm}$; Rigaku AFC-6A fourcircle diffractometer, graphite-monchromated Mo $K \alpha$ radiation; lattice parameters from 16 reflections ($60<2 \theta<63^{\circ}$); $\omega-2 \theta$ scan mode, scan speed 4°
© 1990 International Union of Crystallography

Table 1. Atomic fractional coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ (Hamilton, 1959)

	$\boldsymbol{B}_{\text {eq }}={ }^{4} \sum_{i} \sum_{j} \boldsymbol{B}_{i j} \mathbf{a}_{i} \mathbf{a}_{j}$.			
	x	y	z	$B_{\text {eq }}$
Pt	0.5329 (1)	$0 \cdot 25$	$0 \cdot 3065$ (1)	0.38
$\mathrm{Ho}(1)$	$0 \cdot 8126$ (1)	$0 \cdot 25$	$0 \cdot 3578$ (1)	0.58
Ho(2)	0.9846 (1)	0.25	0.5823 (1)	0.56
$\mathrm{Ba}(1)$	$0 \cdot 3138$ (2)	0.25	0.7934 (2)	0.84
$\mathrm{Ba}(2)$	0.5919 (2)	$0 \cdot 25$	0.5774 (2)	0.90
Cu	0.2684 (4)	$0 \cdot 25$	0.5392 (3)	0.66
$\mathrm{O}(1)$	0.446 (2)	$0 \cdot 008$ (4)	0.218 (1)	0.97
O(2)	0.636 (2)	0.004 (3)	$0 \cdot 385$ (1)	0.88
$\mathrm{O}(3)$	0.863 (2)	-0.007 (4)	0.493 (1)	0.91
$\mathrm{O}(4)$	0.390 (2)	0.25	0.410 (2)	$1 \cdot 16$
$\mathrm{O}(5)$	$0 \cdot 685$ (2)	$0 \cdot 25$	$0 \cdot 207$ (2)	0.73

Table 2. Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Pt}-\mathrm{O}(1)$	2.01 (2)	Pt O(2)	2.04 (2)
$\mathrm{Pt}-\mathrm{O}(4)$	2.00 (2)	$\mathrm{Pt}-\mathrm{O}(5)$	2.05 (2)
$\mathrm{Cu}-\mathrm{O}\left(2^{\text {i }}\right.$)	2.01 (2)	$\mathrm{Cu}-\mathrm{O}\left(3^{\text {i }}\right.$)	1.98 (2)
$\mathrm{Cu}-\mathrm{O}(4)$	$2 \cdot 12$ (2)		
$\mathrm{Ho}(1)-\mathrm{O}\left(1^{\text {vi }}\right.$)	2.24 (2)	$\mathrm{Ho}(1)-\mathrm{O}(2)$	$2 \cdot 32$ (2)
$\mathrm{Ho}(1)-\mathrm{O}(3)$	2.36 (2)	$\mathrm{Ho}(1)-\mathrm{O}(5)$	2.39 (2)
$\mathrm{Ho}(2)-\mathrm{O}\left(1^{\text {vii }}\right.$)	2.37 (2)	$\mathrm{Ho}(2)-\mathrm{O}(3)$	2.26 (2)
$\mathrm{Ho}(2)-\mathrm{O}\left(3^{\text {viii }}\right)$	2.31 (2)	$\mathrm{Ho}(2)-\mathrm{O}\left(5^{\text {vii }}\right.$)	$2 \cdot 39$ (2)
$\mathrm{Ba}(1)-\mathrm{O}\left(1^{\text {i }}\right.$)	$2 \cdot 88$ (2)	$\mathrm{Ba}(1)-\mathrm{O}\left(1^{\text {iv }}\right)$	$3 \cdot 16$ (2)
$\mathrm{Ba}(1)-\mathrm{O}\left(2^{\text {i }}\right.$)	$2 \cdot 81$ (2)	$\mathrm{Ba}(1)-\mathrm{O}(3)$	$3 \cdot 18$ (2)
$\mathrm{Ba}(1)-\mathrm{O}\left(4^{\text {i }}\right.$)	$2 \cdot 60$ (2)	$\mathrm{Ba}(1)-\mathrm{O}\left(5^{\text {ii }}\right)$	$2 \cdot 834$ (1)
$\mathrm{Ba}(2)-\mathrm{O}\left(1^{1}\right)$	3.09 (2)	$\mathrm{Ba}(2)-\mathrm{O}(2)$	$2 \cdot 92$ (2)
$\mathrm{Ba}(2)-\mathrm{O}\left(2^{\text {i }}\right.$)	$2 \cdot 80$ (2)	$\mathrm{Ba}(2)-\mathrm{O}(3)$	$3 \cdot 35$ (2)
$\mathrm{Ba}(2)-\mathrm{O}(4)$	3.03 (2)	$\mathrm{Ba}(2)-\mathrm{O}\left(4^{\text {ii) }}\right.$)	$2 \cdot 84$ (2)
$\mathrm{Ba}(2)-\mathrm{O}\left(5^{\text {vii }}\right)$	$2 \cdot 86$ (2)		
$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{O}\left({ }^{\text {iii }}\right.$)	$86 \cdot 2$ (7)	$\mathrm{O}(2)-\mathrm{Pt}-\mathrm{O}\left(2^{\text {iii }}\right)$	$86 \cdot 2$ (7)
$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{O}(2)$	$93 \cdot 6$ (7)	$\mathrm{O}\left(1^{\text {iii) }}\right.$ - $-\mathrm{Pt}-\mathrm{O}\left(2^{\text {iii) }}\right.$)	$93 \cdot 5$ (7)
$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{O}(4)$	93.7 (7)	$\mathrm{O}(2)-\mathrm{Pt}-\mathrm{O}(4)$	$92 \cdot 1$ (7)
$\mathrm{O}(1)-\mathrm{Pt}-\mathrm{O}(5)$	88.4 (6)	$\mathrm{O}(2)-\mathrm{Pt}-\mathrm{O}(5)$	85.9 (7)
$\mathrm{O}\left(1^{\text {iii }}\right)-\mathrm{Pt}-\mathrm{O}(4)$	$93 \cdot 6$ (7)	$\mathrm{O}\left(2^{\text {iii) }}\right)-\mathrm{Pt}-\mathrm{O}(4)$	$92 \cdot 1$ (7)
$\mathrm{O}\left(1^{\text {i'I }}\right)-\mathrm{Pt}-\mathrm{O}(5)$	88.5 (6)	$\mathrm{O}\left(2^{\text {iii }}\right)-\mathrm{Pt}-\mathrm{O}(5)$	85.9 (7)
$\mathrm{O}\left(2^{\mathrm{i}}\right)-\mathrm{Cu}-\mathrm{O}\left(2^{\text {i }}\right.$)	91.8 (7)	$\mathrm{O}(3)-\mathrm{Cu}-\mathrm{O}\left(3^{\text {ii }}\right)$	$88 \cdot 1$ (8)
$\mathrm{O}\left(2^{\text {i }}\right)-\mathrm{Cu}-\mathrm{O}\left(3^{\text {i }}\right.$)	86.7 (8)		
$\mathrm{O}\left(2^{\mathrm{i}}\right)-\mathrm{Cu}-\mathrm{O}(4)$	96.2 (7)	$\mathrm{O}\left(3^{\text {i }}\right.$ - $-\mathrm{Cu}-\mathrm{O}(4)$	$103 \cdot 7$ (8)
$\mathrm{O}\left(2^{\text {ii) }}-\mathrm{Cu}-\mathrm{O}(4)\right.$	96.2 (7)	$\mathrm{O}\left(3^{\text {ii) }}-\mathrm{Cu}-\mathrm{O}(4)\right.$	$103 \cdot 7$ (8)
$\mathrm{Pt}-\mathrm{O}(4)-\mathrm{Cu}$	169.2 (13)		

Symmetry code: (i) $-x+1,-y,-z+1$; (ii) $-x+1, y+\frac{1}{2},-z+$ 1; (iii) $x,-y+\frac{1}{2}, z ;$ (iv) $-x+\frac{1}{2}, y, z+\frac{1}{2}$; (v) $x-\frac{1}{2},-y,-z+\frac{1}{2}$; (vi) $x+\frac{1}{2},-y,-z+\frac{1}{2} ;$ (vii) $-x+\frac{1}{2}, y, z+\frac{1}{2}$; (viii) $-x+2,-y,-z$ +1 .
$\min ^{-1}(\omega)$; data collection up to $2 \theta=65^{\circ}$; three standard reflections with no significant intensity variation; 5301 reflections measured ($h:-15 \rightarrow 15, k$: $-8 \rightarrow 8, l: 0 \rightarrow 19$), of which 1473 unique reflections with $\left|F_{o}\right|>3 \sigma\left(F_{o}\right)$ were considered observed, $R_{\text {int }}=$ 0.061 , absorption correction ($16.04<A^{*}<192.37$), correction for Lorentz and polarization effects.

From the possible space groups, $P c m n$ and $P c 2_{1} n$, Pcmn was adopted from statistical distribution of the observed intensities. Pcmn proved to be the correct choice also in the later stages of the structure determination.

On the assumption that this compound is isomorphous with $\mathrm{Er}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1 \cdot 1} \mathrm{Pt}_{0.9} \mathrm{O}_{8}$, the structure was solved using the atomic parameters of the Er compound in the first stage of the structure determination. For the population parameter x of Cu atoms at
the Pt position, 0.1 was used from a consideration of the results of EPMA analysis and the R value. Refinement by full-matrix least squares on F of positional and anisotropic thermal parameters for all atoms converged to a final $R=0.064, w R=0.077[w$ $\left.=1 / \sigma^{2}(F)\right]$ and $(\Delta / \sigma)_{\max }=0.28$ in the last cycle. The final difference Fourier map shows maximum and minimum heights of $11 \cdot 1$ and $-11 \cdot 0 \mathrm{e} \AA^{-3}$. The value of g for the isotropic secondary extinction (Zachariasen, 1967) is $5.7(2) \times 10^{-5}$.
All calculations were carried out using the UNICSIII program system (Sakurai \& Kobayashi, 1979) and the full-matrix least-squares program RADIEL (Coppens, Guru Row, Leung, Stevens, Becker \& Yang, 1979). Atomic scattering factors for the O^{2-} ion were taken from Tokonami (1965), and those for other ions from International Tables for X-ray Crystallography (1974).

Discussion. Final atomic coordinates and selected interatomic distances and angles are presented in Tables 1 and 2.* The structure of the title compound is essentially the same as described for $\mathrm{Er}_{2} \mathrm{Ba}_{2}-$ $\mathrm{Cu}_{1.1} \mathrm{Pt}_{0.9} \mathrm{O}_{8}$. The coordination of the Cu and Pt atoms is shown in Fig. 1. A distorted squarepyramidal coordination of the Cu ion and a distorted octahedral coordination of the Pt ion are typical types of coordination for Cu^{2+} and Pt^{4+} ions, respectively. As shown in Fig. 2, double $-\mathrm{O}-\mathrm{Pt}-\mathrm{O}-\mathrm{Cu}-$ zigzag chains compose a onedimensional column-like structure running along the b axis.

The measurements of temperature-dependent conductivity have made it clear that the conductance is proportional to $\exp \left(-T^{-1 / 2}\right)$ and exhibits semiconductivity with a narrow energy gap. This result might be explained by the Mott-Hubbard model (Toyota, Koorevaar, van den Berg, Kes, Mydosh, Shishido, Saito, Kuroda, Ukei, Sasaki \& Fukuda, 1989).

[^0]

Fig. 1. The coordination geometry of the Pt and Cu ions, surrounded by O ions. Atom key: open circles O , filled circle Pt , shaded circle Cu .

$$
\mathrm{Ho}_{2} \mathrm{Ba}_{2} \mathrm{Cu}_{1+x} \mathrm{Pt}_{1-x} \mathrm{O}_{8}(x=0 \cdot 1)
$$

Fig. 2. Column-like units containing the double zigzag chains of Cu, O and Pt ions. Atom key: open circles O , filled circles Pt , shaded circles Cu .

The authors would like to thank Dr N. Toyota and Mr T. Sasaki for measurements of physical properties.

This work was partly supported by a Grant-In-Aid on Superconducting Materials (Grant 63631505)
from the Ministry of Education, Science and Culture of Japan.

References

Coppens, P., Guru Row, T. N., Leung, P., Stevens, E. D., Becker, P. J. \& Yang, Y. W. (1979). Acta Cryst. A35, 63-72. Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 79, 86, 90, 93, 149-150. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Laligant, Y., Ferey, G., Hervieu, M. \& Raveau, B. (1987). Europhys. Lett. 4, 1023-1029.
SaKurai, T. \& Kobayashi, K. (1979). Rikagaku Kenkyusho Hokoku, 55, 69-77.
Shishido, T., Fukuda, T., Toyota, N., Ukei, K. \& Sasaki, T. (1987). J. Cryst. Growth, 85, 599-601.

Swinnea, J. S. \& Steinfink, H. (1987). Acta Cryst. C43, 2436.
Tokonami, M. (1965). Acta Cryst. 19, 486.
Toyota, N., Koorevaar, P., van den Berg, J., Kes, P. H., Mydosh, J. A., Shishido, T., Saito, Y., Kuroda, N., Ukei, K., SaSaki, T. \& Fukuda, T. (1989). J. Phys. Condens. Matter, 1, 3721-3726.
Ukei, K., Shishido, T. \& Fukuda, T. (1988). Acta Cryst. C44, 958-959.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Structure of a Triclinic Rubidium Ammonium Triaqua- μ_{3}-oxo-hexa- μ-sulfatotriferrate(III) Tetrahydrate, $\mathrm{Rb}_{2 \cdot 74}\left(\mathbf{N H}_{4}\right)_{2 \cdot 26} \mathrm{Fe}_{3} \mathbf{O}\left(\mathrm{SO}_{4}\right)_{6} \cdot \mathbf{7 H}_{\mathbf{2}} \mathrm{O}$

By K. Mereiter
Institut für Mineralogie, Kristallographie und Strukturchemie, Technische Universität Wien, Getreidemarkt 9, A-1060 Vienna, Austria

(Received 1 February 1988; accepted 4 September 1989)

Abstract

Rb}_{2 \cdot 74}\left(\mathrm{NH}_{4}\right)_{2 \cdot 26} \mathrm{Fe}_{3} \mathrm{O}\left(\mathrm{SO}_{4}\right)_{6} .7 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=\) $1160 \cdot 9$, triclinic, $P \overline{1}, a=9.783$ (3), $b=9.586$ (3), $c=$ 18.389 (4) $\AA, \quad \alpha=95 \cdot 30$ (2),$\quad \beta=93 \cdot 19$ (2),$\quad \gamma=$ $118 \cdot 12(2)^{\circ}, \quad V=1504 \cdot 8(4) \AA^{3}, \quad Z=2, \quad D_{x}=$ $2.57 \mathrm{~g} \mathrm{~cm}^{-3}$, Мо $K \alpha, \lambda=0.71069 \AA, \mu=62.3 \mathrm{~cm}^{-1}$, $F(000)=1140, T=295 \mathrm{~K}$, final $R=0.033$ for 4528 observed reflections. The structure contains discrete trinuclear $\left[\mathrm{Fe}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{O}\left(\mathrm{SO}_{4}\right)_{6}\right]^{5-}$ units arranged in close-packed pseudotrigonal layers parallel to (001) at $z \sim 1 / 4$ and $z \sim 3 / 4$. The units are tied together by Rb and NH_{4} ions which are statistically but not evenly distributed over five independent cation sites. Four $\mathrm{Rb} / \mathrm{NH}_{4}$ bonded water molecules complete the structure. Average bond lengths are: $\mathrm{S}-\mathrm{O}=$ $1-470$ (22) $\AA, \mathrm{Fe}-\mathrm{O}=2.006$ (50) \AA for all types of O and 1.924 (17) \AA for the oxo O atom coordinated by three Fe atoms (e.s.d.'s for individual bond lengths $\leq 0.004 \AA$).

Introduction. Studies in the system $A_{2} \mathrm{SO}_{4}-\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}-$ $\mathrm{H}_{2} \mathrm{O}$, where $A=\mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{NH}_{4}$ or Tl or

combinations thereof, yielded many novel hydrated basic iron sulfates, many of which are now known to contain the trinuclear anion $\left[\mathrm{Fe}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{O}\left(\mathrm{SO}_{4}\right)_{6}\right]^{5-}$ as a fundamental constituent. Two subgroups of this family of salts have been investigated in some detail; the first one comprises crystals containing sodium and potassium with trigonal or hexagonal symmetry, complicated disorder phenomena and merohedral twinning (Scordari \& Milella, 1983, 1984; Giacovazzo, Scordari \& Menchetti, 1975), the second subgroup comprises crystals with potassium, rubidium and thallium, monoclinic symmetry and essentially ordered structures (Mereiter \& Völlenkle, 1978, 1980; Mereiter, 1980). The title compound, which is pseudotrigonal triclinic in unit-cell dimensions, is of interest as a possible link between the two subgroups.

Experimental. Solutions of $2 \mathrm{~g} \mathrm{Rb} \mathrm{SO}_{4}, 1.5 \mathrm{~g}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ and $4.5 \mathrm{~g} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in $40 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ were slowly evaporated at $340-350 \mathrm{~K}$ and yielded large (C) 1990 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52287 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2 HU , England.

